The Austrian regions in Austria are subject to multiple risks by mass movements and slope processes. Spatial information on hazards related to landslides, rock fall, debris flow, avalanches and erosion is of paramount importance, as well for the safety of existing living space as for future regional development.

The Austrian Concept on Spatial Development (ACSD), which is a strategic instrument for federal policies in regional development, seriously takes into account the challenges by natural hazards and risk. Based on this governmental document a new initiative was started by the Austrian Conference for Spatial Planning (ACSP) establishing strategic partnerships in order to foster the development of policies for key issues in an interdisciplinary forum.

Introduction

The Alpine regions in Austria are subject to multiple risks by mass movements and slope processes. Spatial information on hazards related to landslides, rock fall, debris flow, avalanches and erosion is of paramount importance, as well for the safety of existing living space as for future regional development. The Austrian Concept on Spatial Development (ACSD), which is a strategic instrument for federal policies in regional development, seriously takes into account the challenges by natural hazards and risk. Based on this governmental document a new initiative was started by the Austrian Conference for Spatial Planning (ACSP) establishing strategic partnerships in order to foster the development of policies for key issues in an interdisciplinary forum.

Results & Recommendations

The results presented in this paper are focused on the geological aspects of landslide assessment.

Recommended Modelling Method

Generally for areas with low data information density and quality the application of expert based heuristic methods to generate susceptibility maps for shallow landslides is recommended, while statistic models should be used only when sufficient landslide inventory data in good quality and density are available (Fig. 4).

Scale Levels of Spatial Planning

- On the regional level the hazard Index Maps offer a rough estimation of potentially endangered areas, including susceptibility map and run out assessment. According to run out, the reach angle approach is sufficient.
- On the local level (refined Hazard Index Maps) it is recommended to identify areas with different "needs for action" (consultation of regional planner/preliminary expert opinion/expert’s report). For these maps the estimation of the run out needs to be calculated more precisely by the application of process-orientated approaches.
- On the site specific level a detailed proof of the suitability for building land by means of an expert’s report should be performed. In case of modelling on this level, physically based methods for the assessment of slope stability should be used. In terms of run out assessment, the estimation of frequency, magnitude and forces must be included (Fig. 5).

Minimum Requirements regarding Data Quality and Modelling

- Quality assurance for Hazard Index Maps should be undertaken by fulfilling minimum requirements regarding data quality and modelling (Fig. 6). To reach this goal it is also important to perform several types of model validations and plausibility checks (TSB et al. 2011) and to review the landslide inventory critically regarding to - representativeness, - accuracy of process position - and landslide information.

Up to now, the validation of run out areas can only be performed based on real landslide-events and expert analysis. To ensure the traceability of the results, a detailed documentation of the generation of the map should be carried out.

Conclusions

The results of the ACSD-partnership, including the standardized methods for hazard assessment and mapping (outlined on this poster) and general technical recommendations were agreed among partners from the federal state, the Austrian provinces and representatives of the municipalities and will enter into force in April 2015. A follow-up project was created by the ACSD to elaborate political recommendations for coping with gravitational hazards in areal development, which will be subject to a consecutive stakeholder participation process and provide a new basis for necessary adaptations in risk management policy and legislation.