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LANDSLIDE SUSCEPTIBILITY MAPPING BY MEANS
OF ARTIFICIAL NEURAL NETWORKS PERFORMED FOR THE REGION
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Introduction

The study areais located in the eastern foothills of Fischbacher Alps in Styria and covers an area of 60 km?2. The geology
is mainly composed of phyllitic mica schist and phyllites, but blackschists, carbonates and orthogneiss can also be
found. The elevation ranges from 600to 1.500 m.

In August 2005, prolonged rainfall (about 200 mm in 48 hrs) with a relatively low intensity (about 15 mm per hour)
triggered more than 600 landslides in the region of Gasen-Haslau, Eastern Styria, Austria. By means of Artificial Neural
Networks a landslide susceptibility map was generated using 368 landslide points of this event. The main focus of this
study is to analyse the capability of this method to assess landslide-prone areas and in particular when using general
available data. Furthermore, it should be analysed how much the performance of the Neural Network is affected by a
reductioninlandslide data for the input model, since the number of mapped landslides available for modelling is quite
low in many cases.
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Artificial Neural Networks

connections. A network consists of nodes (which contain activation functions) @ ; ;'

and connections between them (which contain weights). The network is fed by % 7 @™

input data (geo-parameters) and minimizes step-by-step the error between & ! L '
measured output (mapped landslides) and calculated output (susceptibility ¥ 7

map) by optimizing the weights. i - 4
Database and its Inaccuracies

The landslide database used for the Neural Network contained 368 spontaneous

landslides (soil slips and earth flows), which occurred during the event of August =

2005. Landslides caused by channel erosion were excluded. Several parameters 3 J'

derived by the 50 m DEM, as well as the parameters geology, streets and forests, ﬁ 1: [I

served as input data. It turned out that the general available forest- and street R ———= W —

parameters of the used digital cadastral map did not correspond to the field e

mapping results in many cases. To test the effect of this less accurate general
available data on the model results, the regionalisation data set was created,

which contained this data.

Forests at landslide points: field-
mapped and digital cadastral map
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Here, the further to the top left the
curveislocated, the better the result.

Including Precipitation Data

In order to create a susceptibility map with more general validity (also valid
for other, similar precipitation events), the INCA-precipitation data of the
August 2005 event were integrated into the model. INCA precipitation data
(HAIDEN ET AL. (2007)) are derived from radar data calibrated on station
data and are available with a temporal resolution of 15 min and a spatial
resolution of 1 km?. Hence a “worst case” precipitation map was created by
attributing the highest occurring precipitation of the event of August 2005
uniformly to the whole study area (SCHWARZ, L. & TILCH, N. 2008). For this
reason, the “worst case” result showed high susceptibility values over a
large extent of the study area. Looking at the recognition rate, this result
performed better (94,2 %) than the “best” result without precipitation.
Looking at the SPM-Validation of CHUNG & FABBRI (2003), both results
performed equally. But it has to be pointed out that the precipitation data
itself still showed uncertainties.
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Conclusions

Employing Artificial Neural Networks produces good results in susceptibility analysis and shows a good capability of
generalisation. Limitations occur for the regionalisation of these results over a 50 m grid by using a general available
land use map. Precipitation asinput data canslightly improve the result and contributes in creating a susceptibility map
of more general validity. The analysis of data reduction indicates that by using only about 30 % of the original landslide
data, a susceptibility map of nearly the same quality could be generated as when using the total number of samples.
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The curve of the independent test data
set (= prediction rate curve) and the
training data set (= success rate curve)
indicate a good performance of the
“best” result. Moreover, the curves of
the training- and test-dataset are
situated close together, so we can
assume that the network also has a
good capability to generalise. The plot
of the regionalisation dataset is
located below the two other curves,
indicating that the general available
land-use map is less suitable for the
regionalisation, but still satisfactory.

Finally, the cumulative distribution of
landslides over the susceptibility
classes also revealed the same aspects.
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Artificial Neural Networks (ANN) are very suitable for non-linear and complex - ;
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Reduction of landslide data (100 to 5 %): Recognition rate
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Reduction of Landslide Data

Normally, the number of mapped landslides available for a model setup and
the spatial accuracy are much lower than in this study. For this reason, it was
investigated how much areduction in the number of landslides used to create a
model affects the results by randomly reducing the number of landslide points
from 100% to 80, 60, 40, 20, 10 and 5 % of the total sample. This procedure was
repeated several times. For capturing the full possible range, at 10 and 5 % a
“worst case” scenario was created by choosing landslide points that are
situated in locations which are expected to have a low susceptibility (inside
forests etc.). It became apparent that the range in the recognition- and
prediction rate curve spreads slowly from the high percentages to the very low
percentages (highest range at 5 %). It also turned out that the quality of the
results remains nearly the same down to about 30%, while it decreases clearly
at 10 and 5% (especially for the “worst case” results). Consequently, 75-150
landslide points of the same data quality as in this study should be sufficient for
calculating a susceptibility map with ANN for other similar study areas.
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Reduction of landslide data (100 to 5 %): Prediction rate curves
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